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are also due to Mr. Donald Melvin for aid in developing examples and

for proof reading.
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CHAPTER 1

INTRODUCTION

Several methods of synthesis of RC active networks have been reported

in the literature. These fall in three main categories.

a) Negative impedance converter (NIC) methods

b) High gain ideal amplifier methods

c) Non-ideal active device methods

All methods require the selection of certain parameters (the roots

of an auxiliary polynomial or residues at poles). There will be restrictions

on these parameters introduced by realizability requirements. In addition,

other restrictions may arise if the parameters are to be chosen to minimize

the sensitivity of a property of the realization to changes in component

values, in particular to variations in an active device parameter like

the conversion ratio of the NIC. The selected property of the realization

whose sensitivity is to be minimized may be the poles or zeros of the realized

transfer function or the coefficients of the corresponding )ol]ynomials,

or the transfer function itself as a function of frequency.

Horowitz has given a method for the decomposition of the denominator

of a transfer impedance in order to yield minimum sensitivity of the cascade

NIC realization of Linville to variations in the NIC conversion ratio. In

this case the sensitivity of the poles, the coefficients of the denominator

and the frequency response are all three simultaneously minimized.

More recently Callahan2 has given the minimum sensitivity conditions

for a realization technique due to Horowitz to variations of a paramter
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similar to the conversion ratio of an NIC. However, the realization technique

under discussion does not use an NIC and the introduction of an artificial

parameter with respect to whose variations the sensitivity is minimized

does not insure optimization with respect to the actual device parameter

which is varying.

In this report two previously reported5,4 realization techniques will

be considered. In both of these the active device is characterized by all

(four) of its two-port parameters rather than a single one. Thus, the

realizations utilize actual devices which are either single stage or multi-

stage transistor amplifiers. The questions to be considered, in addition

to realizability, are

1. How should arbitrary parameters in the realization procedure

be chosen to minimize sensitivity of the transfer function or

the poles to variations in the most variable parameter of the

active device?

2. What limitatior.s exist for realization by means of a single

transistor?

The active devices that are used in the realizations consist of one

and two stage comaon emitter and one stage common base transistor amplifiers.

The low frequency equivalent circuit that will be used in all three cases

is shown in Fig. I(a). (For the single stage common emitter connection the

reference of the controlled source will be reversed.) The parameters of this

circuit will be related to the transistor parameters shown in Fig. l(b).

Typical values of the parameters are given in Table 1. (For reduced sensitivity

a series resistance is connected to the emitter making re' - 100.) The

design of the two stage amplifier is shown in Fig. 2.
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Figure 1.

1 stage common 2x10 4 1.25x10-7; .0
emitter 7 x 10- 1 .01

2 stage common 0 4  C l18-
emitter 3 x 10" < 8 5 x 10 .15

normalized to G1 i <3xi0- 1.67 4-0

1 stage common.01 7 x 0-6 3.6 x - .-7
base .01

normali.zed to G 1 7 x 10"4 3.6 x I0-5 1

Table 1.
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The parameters of the circuit of Fig. l(a) are given in terms of

those of Fig. l(b) in Table 2. In the 2 stage case identical transistors

are assumed. The resistance re includes the emitter resistance and the

external resistance in the emitter lead.

I
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CHAPTER 2

REALIZATION ONE

2-1. Summary of the Realization Technique

The realization procedure considered in this Chapter is that due to

Kuh.5 A structure of the form shown in Fig. 3 is assumed.

y ly

Figure 3.

.Within the dashed lines is an RC admittance Y which is to have the partial

structure shown, G and the controlled voltage source can be replaced by

their current source equivalent and the result takes the form of Fig. I.

hch of the three conductances Gl, G2 and G0 has been replaced by two in

parallel. The structure within dashed lines is the equivalent circuit of

an active device. Because of the reference of the controlled source, the

device my be a one stage common base amplifier or a two stage common emitter

amplifier. The double primed conductances are external to the active device.

0," serves as the load.

+ +1

+I ...... V
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VI RC q2  Gli G' G3 ' g 2 •G G3"

I 3

g =rMGl'G31

Figure 4.

From Fig. 3 the transfer voltage ratio V2/V 1 is routinely found to

be

V2 -P:s) _21
H(s) = V Q S Y2 2 + 1 - (g/G 3 -'l)Y (1)

where y21 and y2 2 refer to the RC two-port on the left and admittances have

been normalized with respect to GI. Numerator and denominator of the given

transfer function P/Q are now divided by an auxiliary polynomial D(s) having

only negative real roots and the resulting denominator is expanded in partial

fractions. Thus,

"-Y2 1 = -

k i' on ki"a
k a ~ + k +i sa (2)

(Actually /eD' is expanded and the result multiplied by a.)

Note that the denominator of Eq. (1) is the difference of two RC admittances

(assuming g/IG > 1, as evident from Table 1.) Equation (2) also has this



a

form. Hovever, one-to-one identifications cannot yet be aem* betveen these

two expressions since y2 2 must have as poles all the roots of D(s) because

Y21 does. Bance, a term

k +~ Z ki/(a + ,

is added and subtracted in Eq. (2) leading to the identifications

Z ks(L -1) Y.-k* 1c,--- •

y (k o 1 k ) + k + +, ' + (k, - "i

(14)

For realizability ye require

g >0 G 3

kI > ki" (6)

k > 1 - k if k < 1 (k >O otherwise)

The constant k is introduced to give Y a nonzero d-c value. The values

of O3 and 02 are

G 2 y(.) (0)% Y(..)'Ymo

from which w find

a - G 3 k + k(9
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G kG3(10)
2 

(ki
2-2. Sensitivity Considerations

The sensitivity of the transfer function to a parameter x is defined

as

R x 6H (3.1)

This is a measure of the relative change of H due to a change in x. The

parameter x with which we shall concern ourselves is that parameter of the

active device which causes the greatest variation in the transfer function.

This parameter is the a of the transistor. The emitter resistance is

inversely proportional to the base current so that it might be expected

that this quantity will be dominant. However, this variation can be

reduced by inserting a large enough external resistance in the emitter lead.

By direct application of the definition of sensitivity to the parameters

in the last two columns of Table 2 it is found that of the four quantities

g, G1 , G2 and %3, the one having greatest sensitivity to variations in a is

g, by two orders of magnitude. In addition, the variation of the transfer

function to changes in the conductances Gl, G2 , G3 (represented by the primed

quantities in Fig. 4) can be reduced if the external conductances shunting

these are large enough. Hence, the sensitivity which we shall take as a

measure of the performance is SH(W'g).
g

Applying the definition of sensitivity to Eq. (1) leads to
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juk I
g(k + j--w )

-= (g - G(21 )(,1e

For a given active device g and G3 are fixed constants (at their nominal

values). The polynomial Q(s) is given. Hence, to minimize the magnitude

of 0 we must minimize the magnitude of the quantity in parentheses. (For
9

convenience we shall deal with its square.) Thus, define the function

2 2 .k 2
f =k + w = (k + *ki )2 + w I k )

(13)

It is required to choose the residues in this expression (assuming

temporarily that the aI poles have been chosen) such that the function f

is minimized. However, since g and G3 are fixed, the choise of the residues

is further constrained by Eqs. (6) and (9).

The problem can be handled by the use of Lagrange multipliers.

Writing the constraint equation (9) as

S=k+ Z-ki-g +G 3 0 (14)

the desired minimma is located at

df + M0 - 0

or

( + %)dk+Z (j+ X)dk, - (15)

where X is as yet undetermined. Since the variations in each of the

k's are independent, we require that
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'K+ XW-

•-4•X=0 J u, 2,..., n (16)

Using Eq. (13) for f these become

2k

k. Z w i (17)
+

2 22( + wki2) 2 + 240 k i + k0
2(k+ 2  22+2 2 2 2 2 + ,-0

aoi + + w a + 0 ai +

(18)

Inserting the first of these into the second and also into the

constraint equation (14) finally leads to

n

2.a +X= 2w 1m, 2p ... ,n (

. ,i 2 ki
a 1 +w 2w

These constitute a set of n + 1 linear equations in n + 1 unkums,
) aw the n k i's. When the ks are detemined, Eq. (l4) •il• yield k.

te determinant of the set is
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0i 02 n 01
2 2 2 2 a 2+ 2

1 a02 an a2

2 2 2 2 2 2 2b1

01 +k"2 -k a n a

a1 =2
a 1a2 an n

2 2 2 2 2 2
a 1 4 w 02 + w an 4,w

2 2a

2 2 2 2 0'" 2 2 "

1 1 . . 1 01

n 1 1 . .. 1 02

TTL
2.2 +f(02+ 2) 1 1 ... w 2

7T °2 " %
k2

0 1 a2 an* -n

(20)

The last step is obtained by factoring by columns. Further simplification

is possible by subtracting each row from the preceding row up to the nth

one, and then repeating with the columns. The result becomes

0 0 .. 0 0'l - 2

n 0 0 • 0 c2 - a

0-0 o-0 .. . 0 2. "...

1eI 2 2 n2al - 2 2 - • . . . On -W
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The value of the determinant is clearly zero for any order greater than

three (i.e., n = 2). Furthermore, the rank is three, which indicates that

of the n residues, n - 2 can be arbitrarily chosen.

For the case n =2 the solution for the ki's becomes

(a2 1 -23

k 2 1 (g G (22)
2l 2(a 0I a 2) 3

221 2
k = %00 (g - 03

Thus, either k or k2 must be negative. Although this is a solution of

the sensitivity minimization problem (for n = 2), it is of no value since

the residues do not fall in the permissible domain restricted by condition

(9).

For n > 2, let the last n - 2 residues be chosen arbitrarily. It is

conjectured that removing Eqs. 3 to n and solving for the first two

residues will always lead to a negative one. Note that the determinant

of the reduced set of equations will be the same for all n. Thus, for

n = 3 the solutions for k and k2 are

(a .1 -2 + W2 13 G2 ,k ,3 (g 2

k . 1 3 ( a a 2 2 3
1 2 a +(

(23)
2 2 k -

k " a2 + (g" G- " k3 (a - 0,

2 3 2 2
'02 ( r2 -yl) a3+



Assuming a2 > a,, the factor (02 - a1) will be positive. For the quantities

in both square brackets to be positive will then require the condition

2 2 31) <2(g-G) < 2 (24)

For this condition to be satisfied requires the term on the extreme right

to be greater than the one on the extreme left. Hence,

0 - 01 <a -3 02

3 1<3 2

or (25)

02 < 1

But this is contrary to the assumption 02 > 01. Hence, one of the two

residues will be negative and condition (6) will not be satisfied.

From the results so far obtained it appears that a relative minimum

of the function f does not exist within the permissible domain, which is

a region in the (n + l)-dimensional space consisting of the variables

k and the ki 's. Hence, the lowest value of f must occur on the boundary

of the region. Thinking in terms of three dimensional space, restriction

(6) defines the permissible domain as lying outside of the planes defined

by ki > ki". The boundaries are the planes ki = ki". If kl, say, is

held fixed at kl" the other two variables can still vary over their

permissible range. Hence, the minimum sensitivity will be sought by

fixing each of the ki's in turn to their minimum values and finding the

conditions on the other ki's for minimum sensitivity. This seems like an

interminable process; however, the high degree of symmetry of the equations.

reduces the effort. Furthermore, since the rank of the determinant is three--
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which means all but two of the ki's in Eqs. (19) are to be arbitrarily

specified, as already mentioned--and since one of these remaining two is

also to be held fixed, there remains a set of two equations to solve in all

cases.

Thus, for n = 2 let a2 be the larger of the two poles and let k 2 be

held fixed. Then, Eqs. (19) reduce to

a, a I a2k 22 k 1+ 2=-

a1 +W 22 02 + W

(26)
2 22k
a1 2 k a 2 k 2  g" G

a 2 F 1 2a2 + 3

Solving for k leads to

k2 (g - G3 " k2 12 (27)
1 + w /02

Inserting this into the constraint equation (14) and solving for k leads

to 2

k =
2 ) (28)

Because 02 was chosen as the larger of the two poles k will be positive.

There are two cases to consider: (a) if in the original expansion in

Eq. (2) ko > 1, then the condition on k is k > 0; (b) if, on the other

hand k° < 1, then k > 1 - ko. In case (a) q. (28) shove that it will

always be satisfied. In case (b) the requirement becomes
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2- k < 2 2 (2 ) (29)
02 2 W

Turning back to Eq. (27), since the minimum value of k is ki we

can now write

g - G 3-k2 +2 2 • )>kl" (30)

This can be solved for k 2 ; inserting also the lower bound on k 2 leads to

k2" < k2 < 2  ) (g -G 3 - k") (31)
1 + d/lO

It should be kept in mind that the ki's cannot actually take on their

minimum values since Eq. (6) requires the strict inequality. Hence, the

absolute minimum sensitivity cannot be achieved. However, it is possible

to come within any desired degree of the minimum.

For n > 2 all but the first two ki's are arbitrarily fixed (at

values greater than their lower bounds) and the process just carried

out repeated. However, now when solving for k1 there will be additional

terms of the form
n

"- Z ciykl/( o2 + W)

iI3

on the right side of the first of Eqs. (26) and

n

" " iZ •l/(a02 + w2)

j.IW
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on the right aide of the second. The result will be to subtract from the

solution for k additional terms like the second one on the right in

Eq. (27). Thus,

= (g G k 1 + w2/ a a2 k + .2/ol. 1a3
2 _ 2 2k 3 2 1 + 12/l a2 2l -+ " l 3

(32)

Again solving for k2 and inserting its lower bound leads to

k2" < k2 <2. (g - G03 i - k3 k 3...)

2< 23 1 3 2 2 2
1+ W a1%o a1 2 + W1 /d 1 + W /a4

(33)

This condition, of course, is much more difficult to interpret.

Note that the expressions involving the ki's contain w as a parameter.

When fixing values of the residues a specific value must be assigned to

the frequency. An appropriate value might lie in the important frequency

range determined by the imaginary parts of the poles of the transfer function.

Up to this point it has been assumed that the poles, c°,i were fixed

as well as the constant g - G3 . As for the latter, note that the realizations

will consist of either a single common base stage or a two-stage coumon

emitter amplifier. The values for g - G3 given in Table 1 for these two

are approximately 1 and 450, respectively. This constitutes a considerable

spread. However, these are normalized values with respect to the G1 of

amplifier, that is, with respect to G0' in Fig. 4. It in possible to get

additional values of g - 3 between 1 and 450 by placing an external
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conductance G in parallel with G' in the two stage case. The normaliz-1
ation will now bn with respect to G = GI' + GI". Thus, suppose in a given

case it is desired to have a normalized value of 20 for g - G3 . A G"

satisfying the condition

•.135 -. • x 10 -4 = 0

1 -2 J = 20
3 x 10 + Gl"

or

G = .oo643 (Ri =155 ohms)

will be required.

As for the poles, no conditions for their selection yet have been

discussed. Attention is directed back to Eq. (13). For a fixed set of poles

and neglecting the constraint equation (9), the smallest value of f will

occur at a given frequency if each ki takes on its lowest possible value

ki". Hence, to reduce the value of f we should reduce the values of k i".
fii

But the k i"'s are those residues of Q(s)/D(s) which are negative. Thus,

the poles are to be so chosen that the negative residues will be relatively

small.

One objection to the previous paragraph is that the constraint

equation (9) cannot be neglected. For a fixed g - G3 , if some of the

ki's are small the others must be relatively large in order for their sum

to be constant. However, as noted above, it is possible to vary the value

of g - G between wide limits, so that there will be no objection to the
3

attempt to make the negative residues as small as possible.

Assuming the poles of the transfer function are all complex, the poles

of Q/D leading to negative residues alternate with those leading positive

i



19

residues. Q/D will have the form

SL 7T [(s + ai) 2  b b,21

-) (s l + a)(S+ a2) ... (s + a ) (3 )

where the ci's are ordered in increasing magnitude.

To achieve a residue of small size, it is desired that the numerator

factors be small and the denominator factors be large, when evaluated at

s = -a i Nothing precise can be said on how to choose the a, s to achieve

this result. However, it is noted that a factor of the numerator will have

its smallest value when a -ci = ai; that is, a root of D(s) is equal to

the real part of a root of Q(s). This choice will be most effective in

reducing the residue if the corresponding imaginary part of the root of Q

is relatively small. However, it will be relatively ineffective when the

imaginary part is large. The denominator factors will have large values

if the ci's are far apart.

Thus, in choosing the roots of D(s) the guidlines are:

1. Choose some roots - a in in the vicinity of the real parts of the

* zeros of Q(s).

2. Choose additional roots, -aip, lying between these, the one

closest to the origin being -ain*

3. Arrange the separation between ain and apn such that the

difference between adjacent ones is as large as possible.

After the choice of the ci's and the calculations of the residues of

Q/D, the summation

1 - k + Z ki"
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is formed. (Assuming k < 1; otherwise the term 1 - k can be omitted.)0 0

This is the greatest lower bound of the right side of Eq. (9). If this

quantity is less than 1, then, according to Table 1, a single stage common

base amplifier will be suitable as the active device. If this quantity

lies between 1 and 450, a two stage common emitter amplifier can be

used.

In the former case smaller values of the ki's can be used in Eq. (13).

Hence, the sensitivity in this case will be smaller than in the case

requiring a two stage common emitter amplifier. In this latter contingency,

it is possible to improve the sensitivity by choosing an external conductance

in parallel with the G of the amplifier, as previously discussed.

However, note that the maximum value of the external conductance

shunting GI' is y 22 (O). Choosing the ki's close to the ki "'s will reduce

Y2 2 (0), its lower limit being

G " =k- (1-k ( ki-

S1min 0- k0) + i

If the required external conductance is less than this amount, then g - G 3

can be reduced and the ki's can be brought close to their minimum values.

If not, there will be a limit below which g - G3 cannot be reduced and,

hence, a limit to the degree in which all the ki's can be made to approach

their minimum values.
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2-3. Example

The following transfer function was considered as an example.

H(s)(+ 7)
PHs 2 2Qs) (s + s + 2) (s + 2s + 3)

The poles are located at s = -. 5 + J1.32 and s = - 1 + J1.414. Preliminary

calculations based on the suggested guidelines lead to the choice

D(s) = (s + 1) (s + 2) (s + 3) (s + 4) so that Eqs. (3) and ( 4 ) become

GkI k2

Y(s) = -3 -- (k + k- + k2
g - 3 + 1 s+ 3 (36)

k - .75+ 3s + 6.42s+ (kl- .66)s (k 2 - 8)s
22s +2 s + 4 S+1 +s2 s s+l s+3

w= 2 is chosen as the frequency to be used. It is seen that

1 - k0 + ki" + k 2" ' 9.4 > 1

Hence, a 2 stage realization is required. From Eq. (31) with-a1 = 1,

a2 = 3, k2" = 8 and ki" = .666 it follows that

8 < k2 < 278

Choosing k1 = k2 =25 gives for k from Eq. (9) the value

k 4(p

With these values the sensitivity was calculated to be

15:1-36-7 atva2(7
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No attempt was made to reduce the value of g - G3. Let us now make this

attempt.

Since k2 " = 8, let us arbitrarily choose k2 = 8.2, which is close to

its minimum value. From Eq. (30) it follows that

g - G3 > .666 + 8.2 2 > 25.3
1 + W /9

at all frequencies. This -ill require an external conductance GI", whose

maximum value is y 2 2 (0). From Eq. (36) y2 2 = (0) = k - .75. Since k is still

unknown, it cannot be determined in an unambiguous way how small to choose

g - G3 and still be assured that y2 2 (0) will be large enough to permit the

required GI". Hence, we choose g - G3 to satisfy the requirement that it

be greater than 25.3, and then we compute the remaining parameters. If the

required external conductance can be supplied by the resulting Y2 2 ' the task

is complete; if not a larger value of g - G3 will be required.

Let us choose g - G3 = 26. This requires an external conductance

G" =. .2 - 3 x 10-4 = 4.87 x 10-3

From Eq. (31) at w = 2 we find

.666 < k2 1 (26 - 8.2) = 12.821 + 4/9

Choosing the highest value k2 = 12.8 leads from Eq. (9) to k - 5.

Finally, the sensitivity is calculated to be

Comparing with Eq. (37) shows an improvement in sensitivity by a factor

of 24.

Using the chosen values of the residues lea~u to the follwrLug ftitions

for YO Y22 and 721'
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Y 0017 00274s 00175s
s+l 8+ s 3

s+2 s -- l+s+l B+3

"-Y21 (s + l)(s + 2)s + 3(s + 4)

Since all the transmission zeros are negative real, or at infinity, a ladder

network will realize y22 and y2 1. The realization is shown in Fig. 5.

234 1 .833 .82 1

1.2 1•8 -JV6 200

Fig. 5.

Recall that an external conductance GI" = 4.87 x l0o is required. The 200

ohm resistor (conductance = 5 x 10-3) at the right can supply this conductance.

The normalizing conductance will be

G = Gil + G" .3 x 10 + 4.87 x 10- = 5.17 x 10-

To denormalize, all capacitances should be multiplied by this value and all

resistances should be divided by this value. The complete structure (de-

normalized) is shown in Fig. 6. 92800 6.38

45 193 161 159 193
-- V amplifier

517000 , 8 0

values in ohms wA picofarads
rig. 6.
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CHAPTER 3

REALIZATION TWO

3-1. Summary of the Realization Technique

The second realization procedure to be considered is due to Horowitz3'4

The desired structure is shown in Fig. 7. The specified function is a

I G

~ p+ 2

RC GgV RC I o

VI 'v V

a b
Figure 7.

transfer impedance z2 1 = V /1I. This is to be realized as a cascade of two
21 0 1'

networks, the left hand one being passive RC, the right hand one (inside

the dashed lines) being active RC with the specific structure shown. If

this structure can be achieved, the result can be redrawn as in Fig. S.

Each of the three conductances has been replaced by two in parallel.

The structure within the dashed lines in this figure is the equivalent

circuit of an active device. Because of the reference of the controlled

source the device may be a single comon emitter stage transistor amplifier,

or a more extensive amplifier. The double primed conductors are external

to the atplifier.

A ___...__,__
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G t2

1C G gVl G3  I G3' RC

L J--

Figure 8.

The transfer impedance of two cascaded networks can be written as

Sz21a 21b
21 = s 22a lib

where the subscripts refer to the a and b networks in Fig. 7. For a given

rational function P/Q, numerator and denominator are again divided by a

polynomial D(s) of degree equal to that of Q(s) having negative real

zeros only, and the resulting denominator is expanded in partial fractions.

Then,

D( + Z 8 + (Y x f + a

where a constant K < 1 has been added and subtracted. The quantity

within the parentheses will be positive real (realizable as an RL impedance)

only if K is greater than the zero-frequency value of the remaining terms.

(K > • k /Y)
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Since the maximum value of K is 1, a fundamental limitation on the

procedure is the fact that the zero frequency value of the sum of the terms

having negative residues in Q/D must not exceed unity.

The following identifications can now be made.

Sk'P 1(s)(1)

Z22a = K+ + akiit z2 1= D(s) (42)

.2b .= . s+ ai Z2lb D-((

where PIP2 = P and DID2 =D with

D 1(s) -j (s + ai')

D 2(s) = (s + ) (44)

Thus z21a has the same poles as z22a and z21b has the same poles as zllb

The zeros are assigned to zl and z21b consistent with realizability.

Horowitz considered transfer functions with zeros at infinity only.

4Balabanian disucssed the incorporation of finite transmission zeros in

the a network. The only restriction on the realizability of finite

transmission zeros in either the a or the b network is the requirement

that a transfer impedance ( z2 1a and z 21b) have no pole at infinite,

since the corresponding driving point impedance cannot. Since a complex

pair of zeros cannot be separated, the assignment of such a pair of

zeros to either network requires that the impedances of that network have

at least two poles. For a biquadratic transfer function for exmmple,
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D(s) will have two roots and Q/D will have one positive residue and one

negative one. Thus, both Zllb and z22a will have but one pole.

2
P s +cs+d
Q 2

S + as + b

2 k k
s +as+b -- - k 1

(s + al')(s T K + -+-all)+ (K-I

(45)

AssigLing the complex pair of zeros to either of the networks will cause

the corresponding transfer impedance to have a pole at infinity. It is

still possible to overcome this difficulty by adding and subtracting a

term A/(s + C1) to Eq. (45), after which the following identifications

can be made.

222- -K+ + A (46)z22a 8 + all s + al

Zllb (K 1s~ + a,
now

2
2 s + cs + d I (48)

Z2a (s + al')(s +7- 7 21b +a

The realizability condition on K simply to make Zllb realizable is

K > kl/aI. However, to make the overall transfer function realizable

now requires K > (k, + A)/aI.

A contemplation of higher order transfer functions quickly shows that

the biquadratic is the only case in which the difficulty under discussion

can arise. Thus, a biquadratic (with complex zeros and poles) will lead

to a 0/D function having two positive and two negative residues. So each
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complex pair of zeros can be assigned to one of the two subnetworks.

In the discussion following Eq. (1I) it was indicated that the
2

realizabion procedure under discussion is not general. Callahan, in

considering the sensitivity minimization problem, has stated the following

compact realizability condition. Let the transfer function have complex

poles only and let -si be the ith pole in the second quadrant. Then, the

condition for realizability is

args (49)
-<2

That is, the sum of the angles made by the second quadrant poles with

the negative real axis should not exceed t/2 radians. Turning now to the

detailed realization, routine analysis of the b netwcrk, shown again in Fig. 9,

leads to
R2 - Zl

z R2 zUlb (50)11, - gz lzb -1

z
' x 2 1b (51)

where the primed parameters refer to the part of the network within the

box. Since zllb and z21b have the same poles, we see that zll' and z21'

also have the same poles, and the transmission zeros of the part of the

network in the box is the same as the zeros of the overall b network. Thus,

once zl-' is found, z21' is formed by giving it the same poles as zln' and

the zeros of z21b.

Since Ullb is an RL impedance function a sketch of &llb(a) will bave

the form shown in Fig. l0. From Bq. (50) it is seen that the zeros of

su1 occur when R 2 z 1 and the poles of zl1' occur when /g i f

J1%
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G2

vgv 1 g
glal'

Figure 9.

I I Zl
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II

Figure 10.

R2 ŽK - zfb(-) or G2 5 2)

g< zlb(o) or 9 2 Zlo)

then the poles and zeros of zl1' will be negative real, they will alternate

with each other, and the one nearest the origin will be a pole. Hence,

Z3.1 will be an RC impedance.



30

The remainder of the realization consists of realizing the RC a and b

primed networks, given Z22a' z2 la and z 11, z 2 1 , which is a straightforward

task. Note from Eq. (50) that if Zllb has a pole at infinity (which is

permissible for an RL impedance), then zll will be negative at infinity

and hence will not be realizable. This is the reason for the original

stipulation that D(s) be of the same degree as Q(s).

3-2. Limitations Due to Transistor Parameters

It remains to consider the limitations imposed by realizable values of

transistor parameters. Note that for a given zllb, a g can be chosen to

satisfy the restriction in Eq. (52). If the active device is to be a single

common emitter stage, this value, together with the value in Table 1, will

fix the admittance level. The normalizing conductance will be Go = .0l/g =

1/100g. Since the GI, G2 and G3 conductances are to be the parallel combinations

of the corresponding transistor conductances together with external conductances,

they will be greater than the corresponding normalized transistor conductances.

Thus,
>2xlO"4

C1  G = .02g (53)
0

1.25 x 10-7 -5
G2  G 1.25 x 10g (5)

3 G 7e 0 6ult

1br combining the above condition on G 2 with-the conditions in

Uq. (52) there results
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1.2 4 O5  l5o-5 11.2 x10-<: 1. 25 x 10-S5g <5 G2 <z1
z~< lliO 1b(zlib.f 2 -

or

Zllb(O) > 1.25 x lO-5 Zllb(-) (56)

This appears to be an extremely loose restriction. In fact using Eq. (43)

for Zllb, the condition becomes

K > (1 + 1.25 x i0-5) (57)

Comparing this with the previous realizability conditions on K

(K > T ki/ai)

it is clear that the additional restriction for realizability in a

single common emitter stage is negligible. The conclusion is that if

the given function can be realized in the comtemplated structure at all,

it can be realized with a single common emitter stage as far as the

required g and G2 are concerned.

It still remains to discuss the restrictions on G and G the

shunt branches in the equivalent circuit. Note from Fig. 7 that these

conductances are within the primed b and the a networks. Thus,

G 1 gz Ub(o) - 1G3 zl , " 2 " Zlnb(OT (•

G 11 U22
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Combining the first of these with Eq. (55) leads to

gzflb (0)-i

R2 . llb(07 _ 7 x 10 g (60)

For a fixed g the left side will take on its largest value if R2 takes on

its smallest value, which from Eq. (52) is zllb(oo). Using this value in

(60) and rearranging leads to

(l + 7 x 104 )znb(O) - 7 x 10-4 Zb(o) > (61)

It is always possible to satisfy this expression by adjusting g, provided

the left hand side is positive. Thus,

zllb(o)
zllb-- < 143o ()

Finally, combining Eq. (59) with (53) and (52) leads to the condition

Z22a(0) (6)

Using Eqs. (42) and (43) in this condition leads to

JCŽZ .L ~+(i Y -Z k,
or

ki 1 D•O
_> i+' IT (6•4)

This is a stronger condition than the previous condition on K



(K> Zki/0i

Thus conditions (62) and (63) (or (64)) consititute the restrictions

that might prevent realizability with a single common emitter stage,

assuming the given function is realizable in the contemplated structure.

3-3. Effect of Reversing Transistor

Consider the configuration shown in Fig. 11, which differs from that

in Fig. 9 by the position of R2 relative to the controlled source. Routine

R2

v- 1 --- z b gv 0o 0
z 21"V

Figure 11.

analysis yields for the double primed parameters of the network on the

right

2 Zb l (65)

z 1" (gZ2b 1  (66)

2 ______3.1b_____
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It is seen that zll" is the same as z in Eq. (50) and that z21" differs

z21' in Eq. (51) by a multiplicative constant (gR2 - 1). As noted in Eq.

(52), (gR2 - 1) is a positive number. In the usual methods of realiztug

the passive RC networks, the realization is achieved to within a multiplicative

gain constant anyway. Hence, the only difference in the two configurations

will be the gain levels.

Equations (58) and (59) can still be written but with G and G3

interchanged. The base and collector terminals of the transistor equivalent

circuit will be interchanged. Thus, from Eqs. (58) and (53) for the

realizability of the new GI

gZllb(O) - i
G R> Zl0bO .02g (67)

G=H- zub(O

Again inserting the minimum value of R2 leads to

51Zlb(0) - Zlb(-) >Z (68)

This condition can be satisfied by varying g, provided the left side is

positive. Thus, we require

z 11b (a.
Z b(O) < 51 (69)

This is to be compared with Eq. (62). The present condition on the

realizability of G1 is more stringent than with transistor in the original

position.

Similarly, from Eqs. (59) and (55) for the realizability of the

new G3 we find
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Z2 2 a(0) 4(70)

zlib -

This is to be compared with Eq. (63). Using Eqs. (42) and (43) for

z lib and z2 2 a, this condition becomes

K Z_> + 7 O-4 (71)

This is to be compared with Eq. (64). The comparison indicates that the

realizability condition on G3 is less stringent with the transistor reversed.

Thus, it appears that reversing the transistor causes the realizability

condition on one of the shunt conductances to be tightened while that on

the other conductance is released. If it is found that one or the other

of the two conductances cannot be realized with the transistor in one

configuration, a reversal might permit realization.

The realizability conditions and values of the parameters for the two

single stage common emitter configurations are tabulated in Table 3.

3-4. Sensitivity Considerations

In the last chapter we concerned ourselves with the sensitivity of the

transfer function to changes of the parameter g in the equivalent circuit

of the active device. In the configuration under discussion here, again

there is the possibility of placing external conductances in parallel with

the Gil G2 and 03 conductances in the transistor equivalent circuit. Hence,

the active device parameter whose variation will cause the greatest change

in the response will be g. However, rather than discussing the sensitivity

to g of the transfer function, we shel consider the sensitivity of the
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Configuration 1 Configuration 2

Base Terminal Base Terminal
on Left on Right

For realization Z2 (O) l-lb )

of GI (base to 22a < 50 Zllb ) < 51
1z llb(0) zlb (0) ~5

emitter conductance)

For realization of z Ib(1 z 22a (0)
G3 (collector to Zub _ 1430 l2b _< 1429

emitter conductance)

9 1 ( )> z 1(0

R 2  zllbo >z (zb

Z (c) ( lb(

1 gzfl(o) - 1
1 z22a- > .02g R2  Z lzb(O). .02g

gz:lib(O) - 1 -. -4G 3 R 2  Zlb(O)Ž> 7 x 0g z 2 2 _()> 7 x 10 g

Table 3.
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poles, S i. In the case of the cascade negative impedance converter method
g

of synthesis it has been shown by HorowitzI and Callahan that minimizing the

one also minimizes the other.

In treating the problem of sensitivity minimization Callsahan 2 has

written the Q/D in Eq. (4 1) as follows.

~AQ1 kB% z +k
1=s = -Qi + kB 22a = z llb (72)

where the positive and negative residue terms have been grouped together

and the coefficients of the highest power terms have been explicitly shown

as A and B. k is a fictitious parameter whose value is +1; it is analogous

to the NIC conversion ratio in those methods that use a negative impedance

converter. (Actually Callahan associated the k with the other term but

the result is the same.) By regrouping the terms Q(s) can be written

Q(s) - AQD 2 + kB2D1 = ANI(s) + kBN2 (s) (73)

where N1 and N2 are clearly polynomials with negative real zeros only.

Letting -s i be one of the zeros of Q(s) and (s + s i) one of its factors,

write

Q0s) - (s + si) Q'(s) (74)

Equating the right sides of the last two expressions and solving for

-5 1 leads to AN 1 s(a) + kBN2(s)

""Th es t Q'(s) + t (cb)

The sensitivity of -ast to k can now be found an
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-s 1 -dsi -kBN 2(s)

S k -dP Q,(s) (76)
s=-Si

Note that if k (whose nominal value is +1) is not introduced at all, and

the pole sensitivity to the multiplier B of the polynomial N 2(s) is

determined, the result will be the same as Eq. (76) (after setting k = 1).

That is,

-s -si

SB Sk 1(7

- Si

Callahan has shown that the minimum value of the magnitude of Sk is

obtained if all the zeros of both N (s) and N2(s) are double and they

alternate, the one closest to the origin being a zero of N . Thus,

for minimum pole sensitivity Q(s) has the form

Q(s) = A(s+a )2 (+(s+%) + B(s+b1) ... (2b )2

(78)

and there are an infinite number of such decompositions. Since Q/D

is to be the sum of an RC and an RL impedance, the polynomial D(s) must

be

D(s) = (s+a 1 )(s+a2) ... (s+a)(s+b1 )(s+b2 ) ... (s+b ) (79)

and the two impedances will be

A(s+aI)(s+a2 ) ... (s+a%)
' 2 2 a " (+b1.)(s+b 2) ... (,+b ) (so)
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B(sfb1 )(s+b2 ) ... (S+bm) AB (81)
Zllb ' (s+al)(s+a 2 ) ... (s+a) = (221a

It should be noted that B = z llb(), which is the constant K used before.

From here on K will be inserted for B.

In Eq. (78) the two polynomials NI and N2 have the same number of

double zeros. Callahan has also shown that there is a unique decomposition,

having the same minimum sensitivity, which has the same form as Eq. (76)

but in which N1 has a double zero less than N2. He refers to this as the

"optimum decomposition." However, it can easily be seen that, although a

polynomial Q(s) can be decomposed in the stated form, the contemplated

realization cannot be carried out. Thus, if the last factor in Nl(s) is

missing, zllb in Eq. (81) will have a pole at infinity. Whereas this is

permissible for an RL impedance, it will lead to an unrealizable zll', as

mentioned earlier. Hence, this optimum decomposition cannot be realized in

the structure under discussion.

But what is of greater significance is the observation that sensitivity

minimization with respect to a parameter k, which does not correspond to

anything specific actually varying, does not give an adequate measure of the

performance of the realization. Since g is the varying parameter, the

significant sensitivity is Sri.

-s i s ia K-iS
M g-9V- -(K yK)( (82)

To find the dependence of K( = zllb(u)) on g, note from Eq. (50) that

K (83)
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or

R2 + ' ((8)
+zi (84)

From the last expression we find

- gzy(-) R2 -K

g 1 gz'(o) = g%- i (9R)

The last step follows from Eq. (83).

Finally, inserting Eqs. (76), (77) and (85) into (82) we find

-si R2 - K N2(S)
Si gK (gR- ") Q7 (86)

s=-Si

Recall that gR2 is always greater than 1 and that R2 > K. Thus, it is

possible to make the sensitivity of the poles to variations in g as small

as desired by choosing R2 sufficiently close to K. Furthermore, this

can be done regardless of previous minimization of -si with respect to

changes in K.

Hence, it appears that auy effort expended on obtaining a decomposition

that minimizes the sensitivity to K can be saved, since the minimization of

the sensitivity to g can be achieved by proper choice of P2. However, the

closer that R2 is chosen to K to minimize sensitivity to g, the smaller

will be the external conductance shunting it. The benefits of reduced

sensitivity to variations in G2 will be diminished. Hence, it may often

be of value to obtain the Callahan decomposition first so that a greater



margin in the choice of R2 will be available for the same sensitivity.

(However, the Callahan decomposition so obtained may not be realizable

in a single stage, as illustrated below.)

3-5. Examples

It should be noted at the outset that for a biquadratic transfer function

with complex zeros the Callahan decomposition is not realizable. This is

clear from Eqs. (80) and (81) which show that both Zllb and z22a will be

bilinear functions and there will be no way to assign the complex zeros

to either z21a or z21b.

Consider the transfer impedance

Z P s= s 2+ s + ÷(7
21 = s (s2 2s + 2)(s2 +J, 3l) (87)

Q(s) satisfies the angle condition in Eq. (49) and so this function is realiz-

able. Callahan2 has given the optimum decomposition of Q(s) and a decomposition

in the form of Eq. (78) as follows

q(s) 2 o.2o26(s,,257)2(s+lO, 2 974(8*.l)2(8+.51)2

Both lead to the minimum pole sensitivity as defined by Callahan.

Sl+Jjl ,-.866+J.5
1. 4 S; ' a .7 1 4 ( 8 9 )

As already pointed out, the optimum decomposition cannot be realized by

the structure under consideration.
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As for the decomposition in Eq. (88) it leads to the functions

• 4 24 (s + .1) (6 + 1-,.11 (90)
Zll (a + .(57)(9 100))

.026 Cs + .821) (a., 10.1) (91)
22a = (a + .1) (s + 1.51)

To see if these functions are realizable in a single stage we apply the

conditions in Table 3. The important values are

zub(-) - .974- Z2 2 a(=) .026

zllb(O) = .017 z2 2 a(0) 1.4.

For the transistor in configuration 1 we find that, whereas G3 can be

realized, G1 cannot. With the transistor reversed we find that again
G3 can be realized but not G . Hence, this decomposition is not

realizable in a single common emitter stage.

Note that although (69) is not satisfied, the violation is not very

great since z b(-)/z b(0) - 57. If it is possible to increase z b(0)

without at the same time modifying the remaining values significantly,

it may be possible to achieve a realization. With this thought as guide,

the following was obtained.

-• "U , ,2+2s+2)(s2 +,/,l)(.4..O5) (s+. 85) ( s+1. 6)( s,.f.)

.0.o1 + 617 + A + (.985 - o02 _ . (9)s+.05 O• 789 s+.85 2
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From which we find

zb .985- .042 9 .985(s + .U4)(s + 1.512)
lb a9-s + .85 s + n (s + .85)(s + 11)

(93)

S.015 + ,1177 + .095 . o1 .s6)(s + 15.16)
22a s+.05 s+1.6 (s + .05)(s + 1.6)

(914)

The infinite and zero frequency values are found to be

Znb(o) = .0305 z22 a(-) = .015

Znb(=) = .985 z 22a(o) = 2.43

From these values it is seen from Table 3 that conditions on both G1
and G in configuration 2 are satisfied. Hence, a single stage realization

is possible.

Turning to the sensitivity, from Eqs. (76) and (77) it is found

that

S;jl+Jlj 1.05 x 1.144 (95)

which is only three percent greater than the Callahan minimum. However,

from Sq. (86) the sensitivity of the same pole to g is

ER2 - .985)

From Table 3 we find that g must be chosen greater than 33. However, the

condition on Gi from Table 3 is seen to be
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•.03059

G1 R2 - .0305 > .02g

Since the minimum value of R2 is .985, the denominator of this expression

can be in the neighborhood of 1. Hence, we find g > 100 is required.

Choose g = 150, R2 = 1.0305. With these choices, the pole sensitivity

becomes

I 9 =+j (.0146) (1.144) (97)

which is less than 5 percent of the Callahan sensitivity.

H ' 1
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